			INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics Worksheet-Probability					
Q. No.	Questions of 1 Mark each.							
1.	There are 5 prizes on 1000 tickets of a lottery of company. Probability of winning the prize is							
	(A)	$\frac{199}{200}$	(B)	$\frac{1}{200}$	(C)	$\frac{198}{200}$	(D)	None of these
2.	If a coin is tossed for a certain number of times. How many times the coin was tossed, if the probability of getting a head is 0.4 and it appeared up for 24 times?							
	(A)	60	(B)	50	(C)	40	(D)	55
3.	In a GK test a student was given 50 questions one by one. He gave the correct answer for 30 questions. Find the probability of giving correct answers.							
	(A)	$\frac{4}{5}$	(B)	$\begin{array}{r}34 \\ \hline 60\end{array}$	(C)	$\frac{3}{5}$	(D)	$\frac{6}{5}$
4.	If $P(E)=0.37$, then $\mathrm{P}($ not E$)$ will be							
	(A)	0.37	(B)	0.63	(C)	0.57	(D)	None of these
5.	Probability of getting even number in a single throw of dice is							
	(A)	$\frac{1}{2}$	(B)	$\frac{1}{6}$	(C)	$\frac{5}{6}$	(D)	$\frac{2}{3}$
6.	Assertion : A coin is tossed 30 times and head appears 18 times. Then the probability of getting a tail is $12 / 30$. Reason : Probability of happening of an event = Number of trials in which the event happened / Total number of trials. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A).							

	(c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.
7.	Assertion : If $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \ldots \ldots \ldots \ldots \ldots, \mathrm{E}_{\mathrm{n}}$ are n elementary events associated to a random experiment, then $P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots \ldots \ldots \ldots \ldots+P\left(E_{n}\right)=1$ Reason : For any event ' A ' associated to an experiment, we have $-1 \leq \mathrm{P}\left(\mathrm{E}_{1}\right) \leq 1$ (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A). (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.
	Questions of 2 marks each
8.	The given table shows the number of students participating in various activities in a school. From the above information, one student is chosen at random. (i)Find the probability that the student participating in games. (ii)Find the probability that the student participating in music.
9.	The record of a weather station shows that out of the past 250 consecutive days, its weather forecast was correct 175 times. (i) What is the probability that on a given day it was correct? (ii) What is the probability that it was not correct on a given day?
10.	The blood group of 30 students of class IX are recorded as follows: $\begin{array}{\|lllllllllllllll} \mathrm{A}, & \mathrm{~B}, & \mathrm{O}, & \mathrm{O}, & \mathrm{AB}, & \mathrm{O}, & \mathrm{~A}, & \mathrm{O}, & \mathrm{~B}, & \mathrm{~A}, & \mathrm{O}, & \mathrm{~B}, & \mathrm{~A}, & \mathrm{O}, & \mathrm{O}, \\ \mathrm{~A}, & \mathrm{AB}, & \mathrm{O}, & \mathrm{~A}, & \mathrm{~A}, & \mathrm{O}, & \mathrm{O}, & \mathrm{AB} & \mathrm{~B}, & \mathrm{~A}, & \mathrm{O}, & \mathrm{~B}, & \mathrm{~A}, & \mathrm{~B}, & \mathrm{O} \end{array}$ A student is selected at random from the class from blood donation. Find the probability that the blood groups of the student chosen is (i) A (ii)B (iii) AB (iv) O

19.	The daily cost of milk (in ₹) supplied to 25 houses in a locality are given below :									
		(in ₹)	40-50		50-60	$\begin{array}{\|l\|} \hline 60-70 \\ \hline 3 \end{array}$	70-80	$\begin{array}{\|l} 80-90 \\ \hline 2 \end{array}$	90-100	
		of hours	4		5		5		6	
	If one house is chosen at random, find the probability that ; (a) the milk bill of the house lies from ₹ 60 and less than ₹ 80 . (b) house is paying at the most ₹ 69 , for the milk bill. (c) the milk bill of the house is below ₹ 50 . (d) the milk bill of the house is ₹ 160 .									
20.	CASE STUDY: Mohan has a box of coloured pens, he takes a pen at random from the box. The probability that she takes a red pen is 0.4 . If the box contains total 50 pens of blue green and red colour and there are 15 blue pens and 15 green pens then answer the following questions: (i) Find the probability that he does not take red pen. (ii) Find the number of red pens in the box. (iii) Find the probability of taking blue pen. (iv) Find the probability of not getting blue and red pen.									
	Answers									
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	1	B		2		A	3	C	4	B
	5	A		6		A	7	C	8	(i) 0.3 (ii)0.4
	9	(i)0.7(ii)		10	$\text { (i) } 0.3$	$\begin{aligned} & \text { (ii)0.2(iii)0.1 } \\ & \text { (iv)0.4 } \end{aligned}$	11	$\begin{aligned} & \text { (i) } \frac{1}{8} \text { (ii) } \frac{7}{20} \\ & \text { (iii) } \frac{1}{20} \text { (iv) } \frac{1}{10} \end{aligned}$	12	(i)0.6(ii)0.4
	13	(i)0.13(ii) (iii) 0		14		(ii) $\frac{141}{500}$ (iii) $\frac{127}{500}$	15	(i) $\frac{8}{25}$ (ii) $\frac{8}{25}$ (iii) yes	16	(i) $\frac{19}{20}$ (ii) $\frac{1}{4}$ (iii) $\frac{13}{20}$
	17	$\begin{aligned} & \text { (i) } \frac{4}{7} \text { (ii } \\ & \text { (iii) } \frac{13}{700} \text { (} \end{aligned}$		18		$\text { (ii) } \frac{13}{40} \text { (iii) } \frac{33}{50}$ (iv) 1	19	$\begin{aligned} & \text { (i) } \frac{8}{25} \text { (ii) } \frac{12}{25} \\ & \text { (iii) } \frac{4}{25} \text { (iv) } 0 \end{aligned}$	20	$\begin{aligned} & \text { (i) } 0.6 \text { (ii)20 } \\ & \text { (iii)0.3 (iv) } 0.3 \end{aligned}$

